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ABSTRACT 

Aerosol mixing state describes how aerosol compositions are distributed among atmospheric aerosol 
particles in a population. Oversimplified assumptions of aerosol mixing state in atmospheric modeling 
can introduce errors in estimations of weather and climate-relevant aerosol microphysical properties. A 
more comprehensive representation of the aerosol mixing state can be achieved in principle with a 
Particle-resolved Monte Carlo (PartMC) model but at added computational cost that may be prohibitive 
for direct invocation in operational numerical weather prediction or multi-year climate simulations.  
  
The aim of our research is to explore the machine learning (ML) methodologies for estimating aerosol 
mixing state metrics, which we define here in three different ways: with respect to (a) hygroscopicity; (b) 
optical properties; and (c) chemical species abundance. We adopted a data-driven approach, leveraging 
deep learning and statistical learning techniques, to take advantage of massive PartMC model simulations. 
First, we performed particle-resolved simulations by PartMC to create a series of scenarios considering a 
range of global environmental conditions. Each scenario consists of aerosol populations and 
corresponding mixing state metrics. The gas concentration, aerosol mass concentration, environmental 
variables and mixing state metrics of each population constitute the datasets for machine learning 
implementations.   
 
We have adopted and evaluated various configurations of machine learning methodologies in this 
investigation, embracing deep learning, Extreme Gradient Boosting (XGBoost) algorithm, and the 
ensemble approaches. After a rigorous model selection process, we identified an appropriate model to 
derive estimates of aerosol mixing state metrics. We used the computational and data resources of the 
Oak Ridge Leadership Computing Facility (OLCF) and the ORNL Compute and Data Environment for 
Science (CADES). The NVIDIA DGX-1 hardware was used for the prototyping of the ML models. 
  
Our approach has allowed us to gain a new understanding of how machine learning methodologies can be 
applied to improve the representation of aerosol mixing state in atmospheric models and benefit the 
atmospheric research community. Next, we plan to extend our research and methodology to quantify 
some of the aerosol-related uncertainties in the E3SM Atmospheric Model (EAM) Version 1.  
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1. INTRODUCTION 

 ATMOSPHERIC AEROSOLS 

The atmospheric aerosol is a “dispersed condensed phase suspended in a gas,” mainly originating from 
the condensation of gases and from the action of the wind on the Earth’s surface (Jacob, 1999). It impacts 
the lives of human beings given that every day billions of aerosol particles are inhaled with the ambient 
air by every human being (Heyder, 2004). Aerosol particles can be natural (e.g., fog, dust, forest exudates, 
and geyser steam, etc.) or anthropogenic (e.g., haze, particulate air pollutants, and smoke, etc.).  

Aerosols are known to pose strong adverse impacts on human health (Pope III et al., 2002), and also 
impact weather (Chin et al., 2007) as well as climate (Ghan et al., 2012). Studies over the past decades 
implicated that aerosol particle is associated with health disorders including cardiovascular, neurological, 
and respiratory diseases (Wang et al., 2018), especially aerosol particulate matter below 2.5μm (PM2.5) 
due to its ability to penetrate deeper and deposit in the lower respiratory tract (Martins et al., 2015). 
Aerosols play vital roles in cloud formation via cloud condensation nuclei (CCN) properties that act as the 
initial sites for condensation of water vapor into cloud droplets or cloud ice particles. The concentration 
of CCN in an air parcel influences cloud microphysical and radiative properties, thus leading to the direct 
and indirect effects on climate systems. For example, a higher concentration of CCN at a given 
supersaturation results in more droplets with a smaller mean droplet diameter, thus a more reflective 
cloud, known as Twomey effect (Twomey, 1977). Another indirect effect comes from the inhibition of 
precipitation in clouds with small mean droplet diameters which alters the extent and lifetime of clouds 
(Albrecht, 1989). 

 AEROSOL MIXING STATE 

Atmospheric aerosols vary in their chemical compositions. Individual aerosol particles in the atmosphere 
are often complex mixtures of a wide variety of chemical species (Bein et al., 2005; Noble & Prather, 
2000). We use the term mixing state in this context to describe how the aerosol chemical species are 
distributed among the aerosol particles in a population (Riemer & West, 2013). Figure 1 shows an 
example of an aerosol population composed of two chemical species, with four different mixing states. A 
completely externally mixed population contains only one species per particle, while a completely 

internally mixed population contains identical particles which are a mixture of two chemical species. An 
infinite number of intermediate mixing states lie between those two extremes. To quantify the degree of 
mixing state Riemer and West (2013) introduced the concept of a mixing state index (metric) χ where a 

 

Figure 1. Schematic of aerosol mixing states for four different aerosol populations that have the same bulk 
composition (Hughes et al., 2018). The blue and red color represent aerosol species: (a) fully external mixture; 

(b, c) intermediate mixing states; and (d) internal mixture. The mixing state metric χ measures the degree of 
internal mixing, ranging from 0% to 100%. 
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scalar 0% stands for externally mixed while 100% for internally mixed. Multiple aerosol mixing state 
metrics can be defined with respect to hygroscopicity, optical properties, and chemical species abundance. 
 
The magnitude of the aerosol impact on climate significantly relies on the mixing state of aerosols (China 
et al., 2013; Schill et al., 2015). An improper assumption of the aerosol mixing state representation in 
atmospheric modeling may introduce errors in estimations of weather and climate-relevant aerosol 
properties. Jacobson (2000) suggested that mixing state of black carbon in atmospheric aerosols impacts 
radiative heating. Moreover, the properties of fresh emitted atmospheric aerosols can evolve along with 
time in an ambient environment, resulting in significantly different effects on radiative and microphysical 
properties. One of the examples can be shown by the shift from an externally mixed state characteristic of 
fresh emissions to the internally mixed state leading to significant modifications to the optical properties 
(Doran et al., 2007). Ching et al. (2017) quantified the error in CCN activity due to simplifying 
assumptions about mixing state, i.e. assuming that the particle population is internally mixed. Their 
analysis (Figure 2) reveals that for more externally mixed populations (χ below 20%) the relationship 
between χ and the error in CCN predictions is not similar but ranges from around -40% to 150%, 
depending on the underlying aerosol population and the environmental supersaturation.  
 

 REPRESENTATION OF AEROSOLS IN ATMOSPHERIC MODELS 

A realistic representation of aerosol properties in atmospheric models is required for a proper 
understanding and interpretation of aerosol effects on climate via clouds, radiation, and precipitation. A 
comprehensive representation of the aerosol mixing state can be achieved in principle with a Particle-
resolved Monte Carlo (PartMC) model (Riemer et al., 2009) which would be free of any assumptions 
about the mixing state of aerosols. However, the extremely expensive computational cost of this approach 
is prohibitive for numerical weather and climate modeling. In contrast, aerosol mixing state representation 
in global climate models has been highly simplified. The first-generation climate models assumed that the 
aerosols were externally mixed such that each particle is composed of only one type of species (Ghan et 
al., 2012). The new generation of climate models, on the other hand, assume internal mixtures for the 
particle of the same size, commonly known as modal and sectional models (Seigneur et al., 1986; Wexler 
et al, 1994; Zhang et al., 1999). For instance, modal models represent all aerosols within a given mode as 
internally mixed.  

 

Figure 2. Relative error in CNN concentration for different environmental supersaturations (Ching et al., 
2017). 
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If the real mixing state is closer to an external mixture, it will result in errors in aerosol properties, as 
discussed above. It is desirable to derive global maps of uncertainties in aerosol mixing state where 
regions of low χ (externally mixed) can be expected. These would be the areas where we could anticipate 
large errors in CCN prediction due to a simplified aerosol model (assuming internally mixed). On the 
contrary, the regions of the globe with high χ (internally mixed) increase the trust in current CCN 
estimations. Nowadays, the advance of computational resources facilitates the large-scale climate 
simulation; but we are still many decades away from running a particle-resolved aerosol model directly 
on a global scale to create a global map of χ.  
 

 ESTIMATING AEROSOL MIXING STATE VIA MACHINE LEARNING  

In the era of big data, the recent availability of large volume of datasets and the developments in 
computer science enable machine learning to resolve the representation of aerosol mixing state metrics in 
atmospheric models at a global scale. The recent investigation conducted by Hughes et al. (2018) 
produces the first global distribution of a single category of mixing state metric in terms of 
hygroscopicity. Their approach is a combination of particle-resolved modeling and global chemical 
transport model outputs empowered by gradient-boosted regression trees, which provides the capability to 
estimate the mixing state metric. However, the omission of certain critical feature (predictor) variables 
(e.g., temperature) of their methodology may inhibit a reliable prediction. On the other hand, features that 
are either redundant or irrelevant might prohibit the development of a better model because of the 
redundancy and increased computing resources introduced by those features. In our approach, we are also 
interested in estimating mixing states with respect to optical properties and chemical species abundance, 
providing new perspectives and means to study the aerosol properties. 
 

 OBJECTIVES 

This project extends our former study and seeks to apply both Deep Learning and Extreme Gradient 
Boosting algorithm (XGBoost) (Chen & Guestrin, 2016) in order to develop a data-driven avenue to 
predict the multiple mixing state metrics. Deep learning enables computational models to discover 
intricate structure in large data sets (LeCun et al., 2015).  XGBoost is chosen due to its merit in 
employing a computationally efficient variant of gradient tree boosting methods and fabulous recognition 
in ML competitions, other studies, and domains (Torlay et al., 2017). During this current phase of the 
project we have investigated the following: 

 
1) Examine XGBoost, deep learning, and ensemble approaches to representing a single aerosol 

mixing state metric based on hygroscopicity. 
2) Evaluate and develop approaches to contemporaneously represent the multiple aerosol mixing 

state metrics with respect to hygroscopicity, optical properties, and chemical species abundance.  
 
 

2. APPROACH 

The overarching goals of this project center on two interconnected phases (Figure 3): 1) leverage machine 
learning to develop a predictive model for mixing state estimation; and 2) facilitate the scientific 
discovery based on global aerosol mixing state distribution using the machine learning model to 
characterize the uncertainties in the E3SM Atmosphere Model (EAM). This report describes the outcomes 
from the first phases of this study (Figure 4). 
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Figure 3. Overarching framework of the entire project. 

 
 

 
Figure 4. First phase overview. 

 

 CHARACTERIZATION OF MULTIPLE AEROSOL MIXING STATE METRICS  

We have quantified aerosol mixing state with the framework designed by Riemer and West (2013), 
specifically using the mixing state metric χ, which was motivated by diversity metrics used in other 
disciplines such as ecology (Whittaker, 1972), economics (Drucker, 2013) and genetics (Falush et al., 
2007). This metric is an affine ratio of average per-particle species diversity Dα and the bulk population 
species diversity Dγ, where both are based on information-theoretic entropy measures. The definition of 
“species” is not only limited to individual chemical species but also can refer to species groups. For 
example, Dickau et al. (2016) quantified mixing state with respect to volatile and non-volatile 
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components; Hughes et al. (2018) assessed mixing state according to hygroscopicity, defining two species 
groups. 
 
Here we define multiple aerosol mixing state metrics in three distinct ways: with respect to chemical 
species abundance (chi), hygroscopicity (chi_hyg), and optical properties (chi_opt1 and chi_opt_2). In 
order to calculate the mixing state metric based on hygroscopicity, we have combined black carbon, 
primary organic matter, soil dust, freshly emitted marine organic matter into one surrogate species, since 
their hygroscopicity is very low. All other model species are combined into a second surrogate species. 
Two scenarios were assumed to derive the mixing state metric based on optical properties. The first 
scenario considers black carbon as absorbing while the rest species are non-absorbing. For the other 
scenario, both black carbon and soil dust are grouped as one surrogate absorbing species. A detailed 
description of the group is shown in Table 1.  
 

Table 1. Definition of multiple mixing state metrics 

Mixing state metrics Justification Group 

chi Mixing state / 

chi_hyg Hygroscopicity black carbon, primary organic 
matter, soil dust, and marine 
organic matter 

chi_opt1 Optical property black carbon 

chi_opt2 Optical property black carbon, and soil dust 

 

 DATA 

 Creation and assembly of data 

Aerosol mixing state of an aerosol population evolves by the so-called aerosol aging process including 
condensation of atmospheric gaseous components and coagulation with other aerosols. We performed 
particle-resolved simulations by PartMC to create a series of scenarios representing a range of global 
environmental conditions. A scenario describes the change in aerosol mixing state along with time upon 
the certain environmental scenario. The gaseous, aerosol properties, environmental variables, and 
corresponding aerosol mixing state metrics are tracked and recorded by PartMC at each timestamp. Given 
the mixing state metrics only depend on variables within the current box (grid) due to the nature of 
PartMC, we make the assumption that every point in time on the same grid can be considered a separate 
sample for training and testing purposes, leading to a collection of aerosol populations (and corresponding 
mixing state metrics) within every single scenario. The number of the population samples within each 
scenario equals to the length of the timestamp of each simulation. 
 
The same set of scenarios created by Hughes et al. (2018) as were adopted in our research. The data 
consists of 144,000 samples for training and 34,560 samples for testing purposes. A subtle difference 
between the datasets was in the initial state of the particle populations. We included the initial 
(timestamp) state samples that were excluded in Hughes et al. (2018) to carry more information. Thus this 
yields additional 1,000 particle populations for original training, and 240 particle populations for original 
testing scenarios. Another distinction between the scenarios is that original training and testing scenarios 
are mixed and shuffled in our methodology. The entire samples (179,800 particle populations) were re-
distributed into training, development (dev), and testing sets according to the proportion 90% (training) / 
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5% (dev) / 5% (testing). Although the percentage of testing samples account for 5% of the overall data 
sets, the 8,990 samples provide sufficient cases, corresponding to 8,990 particle populations. We applied 
the various learning algorithms on training set, and conducted the hyperparameter tuning on dev set. The 
generalization performance of the algorithm was evaluated on the test set.  
 
A subset of the atmospheric variables (also referred to as features), common to both EAM and PartMC, 
were selected as inputs in model construction. In this way, some features that are either redundant or 
irrelevant were removed while the entire datasets keep sufficient information (Bermingham et al., 2015). 
The common input features consist of gas concentrations, aerosol mass concentration, and environmental 
variables. More information of the input features is available in Support Information Table 1. 
 

 
 

Figure 5. (a) Scatter plots and probability density functions (a); and (right) correlation coefficient 
of multi-aerosol mixing state metrics (b) in training set. 

 

 Characteristics of data 

The characteristics of multi-aerosol mixing state metrics in the training set is explored in Figure 5(a) and 
Figure 5(b). Since the dev and testing sets are from the same distribution, their characteristics are in line 
with the training. All the mixing state metrics are strictly confined within values of 0 to 1 due to the 
nature of their definitions. Certain linear correlations are identified between a pair of different mixing 
state metrics. Unexpectedly, there is a 1:1 line between chi_opt1 (optical property only considering black 
carbon) and chi_opt2  (optical property considering black carbon and soil dust), which might be caused 
by the lack of the soil dust in the population, resulting in the black carbon dominating the optical 
property. On the other hand, chi_opt1 is not correlated to chi and chi_hyg. The probability density 
functions for the 4 mixing state metrics are clearly distinguished from one another. For example, two 
modes are identified in chi_op2 which may owe to the different distribution of the black carbon and soil 
dust compared to the chi_opt1.  
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 METHODOLOGY 

 Implementation 

2.3.1.1 Deep learning 

For deep learning, the activation function of nodes is critical in the neural network which offers the 
nonlinearity relationship and bounds the results in a range. In this investigation, both sigmoid (Cybenko, 
1989) and Rectified Linear Units, ReLUs (Krizhevsky et al., 2012) functions were adopted as the 
activation functions. The sigmoid function is a monotonic, bounded, and differentiable function that has 
the non-negative output (ranging from 0 to 1) and derivative at each point. Krizhevsky et al. (2012) 
suggest that deep convolutional neural networks with ReLUs outperform the other activation function 
(tanh) by several times faster training speed. However, the ReLUs function cannot ensure the results are 
within the boundary (given the mixing state metric ranging from 0 to 1). Additional steps need to be taken 
to limit the predictions within the continuity interval [0, 1]. This is quite often accomplished by simple 
truncation. We consider two hidden layers in this study, and each layer encompasses 32 neurons (Figure 
6).  

 

 
Figure 6. The neural network architecture of this project. 

 

2.3.1.2 XGBoost 

Similarly, the outputs of XGBoost overflow the boundary occasionally, same steps were taken to secure 
the results within the boundary. Various hyperparameters were evaluated in this investigation, here we 
only present the best combination and the corresponding results for each machine learning algorithm. 
Detailed descriptions of algorithms were presented in Table 2 and Table 3. What should be noted is that 
the design of Table 3 is slightly different from the Table 2. For examples, the predictions by FNNRELU in 
Table 2 are within the boundary, while the others mixing state metrics predicted by FNNRELU in Table 3 
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overflow the boundary.  For this reason, FNNRELU_f was considered in Table 3. The following metrics 
were examined: RMSE (Root Mean Square Error), R2 (Coefficient of Determination), and IOA (Index of 
Agreement). A comprehensive comparison of different implementations will be interpreted in Section 3.  

 
Table 2. Description of Algorithms for Single Aerosol Mixing State Metric with respect to Hygroscopicity 

Approaches Ensembling or 
not 

Forced the 
boundary of 
XGBoost (as 
inputs) or not 

Forced the boundary 
of ensemble results or 
not 

Overflow the 
boundary or not 

XGBoost (XGB, 
benchmark) 

N N N/A Y (from former 
studies) 

Fully-Connected Neural 
Network with ReLUs 
function (FNNRELU)  

N N N/A Unknown 

XGB with confined 
boundary (XGBf) 

N Y N/A N 

Ensemble Approach (EA, 
a linear combination of 
XGB and FNNRELU) 

Y N N Unknown 

EA with confined 
boundary (EAf) 

Y N Y N 

Confined EAf (EAff, a 
linear combination of 
XGBf and FNNRELU with 
confined boundary) 

Y Y Y N 

 
Table 3. Description of Algorithms for Multi-Aerosol Mixing State Metrics 

Approaches Ensembling or 
not 

Forced the 
boundary of 
XGBoost (as 
inputs) or not 

Forced the boundary 
of ensemble results or 
not 

Overflow the 
boundary or not 

XGBoost (XGB, 
benchmark) 

N N N/A Y (from former 
studies) 

XGBf N Y N/A N 

Fully-Connected Neural 
Network with sigmoid 
function (FNNSIG) 

N N N/A N 

FNNRELU N N N/A Unknown 

FNNRELU with confined 
boundary (FNNRELU_f) 

N Y N/A N 

Ensemble Approach Y Y Y N 
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(EA*, a linear 
combination of XGBf 
and FNNRELU_f with 
confined boundary) 

 

 Hyperparameter tuning, cross-validation and model selection for XGBoost 

Model selection is the indispensable element of the entire workflow. Hyperparameters stand for the 
parameters whose value is set before the learning process begins rather than during the course of the 
machine learning process. In this project, the hyperparameter tuning follows the idea of grid-searching 
technique that scans the performance of each combination to configure the optimal combination of 
hyperparameters for a given model. Although cross-validation is widely adopted for machine learning, it 
is not worth the trouble for the deep learning (Bengio, 2016). Instead, we use the train/dev/test split to 
tune the hyperparameters for deep learning. Same strategies were taken for XGB to keep consistent with 
deep learning. With respect to deep learning, the learning rate, batch size, and the number of training 
epochs were considered as the hyperparameters. Whilst we explored the maximum depth of a tree 
(max_depth), step size shrinkage used in the update to prevents overfitting (learning_rate), and the 
number of boosted trees to fit (n_estimators) for XGB.  Both training set and dev set were utilized to 
select the models. We derived models with a various combination of hyperparameters from the training 
set and applied them into the dev set. The model with the lowest RMSE or highest R2 was determined as 
the optimal model for both deep learning and XGB. 
 
 

3. RESULTS 

 ESTIMATION OF SINGLE AEROSOL MIXING STATE METRIC 

To assess the ability of original algorithms without confining the results to the boundary we start by 
comparing the XGB, FNNRELU, and EA. The predictions by XGB [-0.0007, 1.01578]) (in dev set and EA 
[-0.00285, 1.01883] (in dev set) overflow the boundary whereas the estimations by FNNRELU [0, 
0.938501] (in dev set) surprisingly within the boundary. The results suggest that neither XGB and EA 
could not be the best model for single aerosol mixing state prediction, although the RMSE of XGB 
(0.01716) and EA (0.01712) are low. The RMSE, R2, and IOA of FNNRLUE are 0.06622, 0.95032, and 
0.98710, respectively, indicating that FNNRELU is promising to predict the single aerosol mixing state 
metric with respect to hygroscopicity.  

 
The XGBf, EAf, EAff are evaluated against the dev sets as well. The XGBf forces the predictions of XGB 
within the boundary, which only marginally improves the RMSE from 0.01716 to 0.01715 and slightly 
boosts the R2 from 0.996663 to 0.996667. EAf leverages the results from XGB and FNNRELU to group as a 
linear combination, while EAff linearly combines the results from XGBf and FNNRELU. All the predictions 
are forced to within the boundary. The evaluation based on RMSE, R2 and IOA offer the conclusions, in 
this order (from most accurate): EAff > EAf > EA (outflow) > XGBf > XGB (outflow) > FNNRELU (Table 
4). The EAff offers the best performance with the lowest RMSE (0.01709 in dev set, and 0.01726 in 
testing dev), R2 (0.99669 in dev set, and 0.99653 in testing set), and IOA (0.99917 in dev set, and 0.99913 
in testing dev). In general, the ensemble approaches outperform the non-ensemble approach, and the XGB 
show an advantage over the neural network. 

 



 

11 

Table 4. Evaluation of Single Aerosol Mixing State Metric with respect to Hygroscopicity (dev set) 

Approaches RMSE R2 IOA Overflow the 
boundary or not 

XGBoost (XGB, 
benchmark) 

0.017163 0.996663 0.999161 Y  

Fully-Connected Neural 
Network with ReLUs 
function (FNNRELU)  

0.066223 0.950320 0.987102 N (but not applicable 
to other mixing state 
metrics) 

XGB with confined 
boundary (XGBf) 

0.017152 0.996667 0.999162 N 

Ensemble Approach (EA, 
a linear combination of 
XGB and FNNRELU) 

0.017118 0.996681 0.999169 Y 

EA with confined 
boundary (EAf) 

0.0170921 0.9966906 0.9991707 N 

Confined EAf (EAff, a 
linear combination of 
XGBf and FNNRELU with 
confined boundary) 

0.0170917 0.9966907 0.9991709 N 

 
 

 MULTI-AEROSOL MIXING STATE METRICS PREDICTIONS 

The model selections in single aerosol mixing state metric prediction contribute a guideline, which 
facilitates the model selections toward multi-aerosol mixing state metrics predictions. Multi-Target 
Regression (MTR) is considered when it comes to multiple dependent variables. Theoretically, the same 
number of XGB models can be trained with respect to the same number of mixing state metrics. For 
instance, four XGB models are easy to attain from training the same features/inputs but different outputs 
in our case. However, when we define more than four aerosol mixing state metrics, models using single 
outputs take longer and are more computationally expensive. In addition, models using single outputs 
with the same features omit the potential relationship between target outputs, since certain target outputs 
may share the similar features during learning. The deep learning demonstrates its superiority over multi-
target predictions since the shallow neural layers are shared by all the outputs, which is simpler than a 
stack of single output models. Here we investigate the performance of 1) multiple XGB models, 2) 
different options for a single neural network with multi-outputs, and 3) the ensemble approach leveraging 
the above models.  
 

 Non-ensemble approaches 

As we discussed previously, The relationship among different mixing state metrics shows the potential of 
applying MTR. The non-ensemble approaches, namely, XGB, XGBf, FNNSIG, FNNRELU, and FNNRELU_f 
were evaluated against the dev sets. The following order is arranged in rank order according to the 
performance (from best): XGBf > XGB > FNNRELU_f > FNNRELU > FNNSIG. The XGBf stands out to be the 
best model for each mixing state metrics in highest R2 for chi (0.99710), chi_hyg (0.99667), chi_opt1 
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(0.99825), chi_opt2 (0.99894), respectively. With respect to the models related to deep learning in our 
case, FNNRELU_f performs the best with highest R2 for chi (0.94859), chi_hyg (0.93221), chi_opt1 
(0.95452), chi_opt2 (0.94324). Here we emphasize again that FNNRELU_f is a single neural network which 
predicts the multi outputs simultaneously, while the XGBf are multiple models for multiple mixing state 
metrics correspondingly. For example, four XGBf models are trained then leveraged to predict the mixing 
state metrics. Amongst them, the XGB and FNNRELU could not be chosen the final models since both of 
them overflow the boundary, albeit XGB provides high predictive performance. Here we adopted the 
XGBf (hereinafter XGB), and FNNRELU_f (hereinafter ANN) as the feasible model for predicting the multi-
aerosol mixing state metrics given there is a tradeoff between runtime and accuracy. Figure 7 displays the 
predictions of the dev set against the actual values using ANN and XGB.  
 

  

  
Figure 7. Predictions of multi-aerosol mixing state metrics in the testing set using XGB (XGBf in the 

context,) and ANN (FNNRELU_f in the context). 

 

 Ensemble approaches 

As we discussed earlier, the ensemble approach considers the linear combination of outputs predicted by 
different models, leading to better estimations for single mixing state metric. Here we explored the same 
technique for multi-aerosol mixing state metrics. The output from XGBf and FNNRELU_f are treated as 
features to formalize as a linear regression problem. Assume we have n samples, the ensemble approach 
can be expressed as  

 
𝑦"#$"%&'" 	= 	𝛽+	𝑦,-. +	𝛽0	𝑦122 + 𝛽3	 
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where yXGB and yANN are calculated by the XGBf and FNNRELU_f models. The ensemble approach allows 
for a nudging for the prediction by individual model, ensuring stable predictions. Figure 5 reveals the 
predictions by combining the XGBf and FNNRELU_f, with better RMSE, R2, and IOA in all the mixing 
state metrics than the best non-ensemble approach above (XGBf).  
 

  

  
Figure 8. Predictions of multi-aerosol mixing state metrics in the testing set. 

 
 

4. SUMMARY 

 CONCLUSIONS 

This study advances the frontier of atmospheric modeling by creating the first-generation machine 
learning models to predict the multi-aerosol mixing state metrics, which enable us to gain new 
fundamental understanding about 1) how machine learning can be applied to improve the representation 
of aerosol mixing state and; and 2) where the inappropriate assumptions of aerosol mixing state may lead 
to large errors at a global scale. The major conclusion from this investigation are summarized as follows: 
 

(1) Ensemble approach outperforms the non-ensemble XGB and deep learning approaches. 
Truncating the results within the boundary for the non-ensemble approach not only ensures the 
prediction but also improves the accuracy of model predictions. 

(2) An ensemble approach was established to couple the XGB and deep learning methods. This 
approach can predict the multi-aerosol mixing state metrics with acceptable predictive power (R2 
= 0.99, IOA = 0.99). 
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(3) The tradeoff between runtime and accuracy needs to be considered when choosing the predictive 
models. 
 

 APPLICATIONS 

This study provides feasible modeling options to predict the mixing state metric(s) as required. For 
instance, the deep learning model might be adopted when considering the long-term or high-resolution 
simulations given the shorter runtime, while the ensemble approach might be possible when the users 
aspire sufficiently confident. Since the features in all the models are a subset of features (outputs) of 
E3SM. Global distributions of multi-aerosol mixing state metrics can be generated by feeding the E3SM 
simulations to the models. This global distribution will re-envision the understanding of current aerosol 
representations in a global model. 
 

 FUTURE DIRECTIONS 

Further studies are foreseen to investigate the robustness of current approaches. Currently, we utilize 90% 
of the data set as the training set and create the models. Using a reduced data set as a training set may 
enable us to develop stable approaches that are loosely coupled with the distribution of data. 
 
The Energy Exascale Earth System Model Version 1 (E3SM-V1), a state-of-the-science Earth system 
model was released recently. This model is able to provide modeling, simulation, and prediction that 
optimize the use of DOE laboratory resources to meet the science needs, which offers a new solution to 
the development of the global mixing state distribution. A significant benefit of the E3SM is its high-
resolution global simulation, which allows producing a higher resolution global maps of the mixing state 
metrics compared to existing map. 
 
At the same time, efforts should also be invested in creating a wide variety of the scenarios. Given our 
current dataset only contains 1240 scenarios in total, massive scenarios similar to the E3SM simulation 
will advance better model development. 
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APPENDIX A. REPRODUCIBILITY 

The code and data 
The code repository is available at https://code.ornl.gov/vga/aerosol-msm-partmc-v0.git 
 
Brief instruction for re-implementation 
a. Systems and platforms 

NVIDIA DGX-1 artificial intelligence supercomputer 
ssh -L 8880:localhost:8880 <username>@deep.ornl.gov 

b. Which containers to use 
docker_image=zzjn-image  
external_folder=/home/<username> 
internal_folder=/workspace/<username> 
 
sudo nvidia-docker run --shm-size=1g --ulimit memlock=-1 -p 8880:8880 --ulimit stack=67108864 -it 
-v $external_folder:$internal_folder $docker_image 

c. Any necessary configuration changes 
Use chrome to launch the Jupyter Notebook on local machine: http://localhost:8880/  

d. Installing additional software 
The packages for the implementations include: math, numpy, pandas, matplotlib, tensorflow, sklearn, 
xgboost, pickle. 

e. Additional instructions 
Please contact zzheng25@illinois.edu if you have any questions and suggestions. 

 
Verification of the results 
All the Jupyter notebooks within the “/tutorial/ipynb” are self-explanatory. The results within each cell 
should be similar with the reference results.  
 
Please contact zzheng25@illinois.edu if you have any questions and suggestions. 
 


